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Abstract. We consider the effect of local flattening of the Fermi surface (FS) of a metal upon
geometric oscillations of the velocity and the attenuation of ultrasonic waves in the neighbourhood
of the acoustic cyclotron resonance. It is shown that such peculiarities of the local geometry of
the FS can lead to a significant enhancement of both the cyclotron resonance and the geometric
oscillations. Characteristic features of the coupling of ultrasound to short-wavelength cyclotron
waves arising due to the local flattening of the FS are analysed.

1. Introduction

The Fermi surfaces of most metals are very complex in shape and this can significantly influence
observables. The phenomena which are determined by the main geometric characteristics of
the FSs, i.e. their connectivity, have been well studied. However, the effects which occur due
to the local geometry of the FSs such as points of flattening or parabolic points have not been
investigated in detail so far. Meanwhile these local anomalies of the curvature of the FS can
noticeably affect the electronic response of the metal to an external perturbation. The change
in the response occurs in the nonlocal regime of propagation of the disturbance when the mean
free path of electrons l is large compared to the wavelength of the disturbance λ. The reason for
this is that in this nonlocal regime only those electrons whose motion is somehow consistent
with the propagating perturbation can strongly absorb its energy. These ‘efficient’ electrons
are concentrated on small ‘effective’ segments of the FS.

When the FS includes points of zero curvature it leads to an enhancement of the contrib-
ution from the neighbourhood of these points to the electron density of states (DOS) on the
FS. Usually this enhanced contribution is small compared to the main term of the DOS which
originates from all the remaining parts of the FS. Therefore it cannot produce noticeable
changes in the response of the metal in the local regime of propagation of the disturbance
(l � λ) when all segments of the FS contribute to the response functions essentially equally.
However, the contribution to the DOS from the vicinities of the points of zero curvature can
be congruent with the contribution of a small ‘effective’ segment of the FS. In other words
when the curvature of the FS becomes zero at some points on an ‘effective’ part of the FS, it
can give rise to a noticeable increase in the number of efficient electrons and, in consequence,
a noticeable change in the response of the metal to the disturbance.
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The influence of locally flattened or nearly cylindrical segments of the FS on the attenuation
rate and the velocity shift of ultrasonic waves propagating in a metal, as well as on its surface
impedance, has been analysed before (see e.g. references [1–4]). Some results of this theoretical
analysis were confirmed in experiments concerning the attenuation of ultrasonic waves in
metals [5, 6]. Here we analyse the effect of the local flattening of the FS on the high-frequency
magnetoacoustic oscillations.

It is known that the absorption coefficient and the velocity of sound propagating in a
metal at right angles to the applied magnetic field B in the region of moderately strong
magnetic fields for which the inequalities �τ � 1 and qR � 1 are satisfied simultaneously
(2R is the characteristic diameter of the cyclotron orbit, and q is the wave vector of the
acoustic wave) oscillate as a result of variation of the magnetic field. These magnetoacoustic
oscillations, which are also known as geometrical oscillations, are generated as a result of
periodic reproduction of the most favourable conditions for the ‘resonance’ absorption of the
acoustic wave energy by electrons moving along the wave front. The oscillations appear
due to the commensurability of the cyclotron orbits of the electrons with the wavelength of
the sound wave. Their period is determined by the extremal diameter 2Rex of the FS of the
metal. The geometric oscillations exist in both low-frequency (ωτ < 1) and high-frequency
(ωτ > 1) ranges (ω is the frequency of the sound wave; τ is the relaxation time). At high
frequencies the magnetoacoustic oscillations may be superimposed on the acoustic cyclotron
resonance. The main contribution to the oscillating corrections to the attenuation and the
velocity shift originates from the vicinities of so-called stationary points of the cyclotron orbit
of the extremal diameter, where an electron moves parallel to the wave front (figure 1). This
leads to a conjecture that the local geometry of the FS near these stationary points will strongly
affect the geometric oscillations.

Figure 1. The axially symmetric lens corresponding to the energy–momentum relation (16). The
lens is flattened at the points A (p2, 0, 0) and B (−p2, 0, 0). These points correspond to the
stationary points of the cyclotron orbit of the extremal diameter when uqω ‖ q ‖ y, B ‖ z.

It follows from the theory of the geometric oscillations expounded in references [7–9] that
the amplitude of oscillations in a simple metal with a closed FS has an order of magnitude
smaller by a factor of 1/

√
qRex than the smooth components of the absorption coefficient and

the velocity of sound. However, in the presence of certain peculiarities in the geometry of the
FS, the number of electrons effectively participating in the absorption can increase significantly,
leading to an enhancement of the oscillations. It was proved, for example in [10, 11], that a
sharp increase in the amplitude of geometric oscillations must take place in a conductor with a
Fermi surface in the form of a slightly corrugated cylinder when the magnetic field is directed
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along the cylinder axis. We show below that when the FS of a metal is flattened near the points
corresponding to stationary points of the cyclotron orbit of extremal diameter this also leads
to a significant enhancement of the geometric oscillations.

2. Acoustoelectronic kinetic coefficients

Let us consider a longitudinal acoustic wave propagating in a metal along the y-axis of the
coordinate system whose z-axis is in the direction of the magnetic field B and coincides with
a high-order symmetry axis of the crystal. Assume that the elastic displacement of the lattice
u(r, t) is proportional to exp(iqy − iωt).

Proceeding from basic concepts in the theory of the propagation of ultrasound in metals
[3, 12], we can write the equation for the amplitude of the elastic displacement uqω of the
lattice (u(r, t) = uqω exp(iqy − iωt)) as

−ω2ρmuqω = −q2ρms2uqω + Fqω (1)

where ρm is the density of matter in the lattice.
The force exerted by electrons on the lattice contains the contribution originating from their

interaction with the electromagnetic field accompanying the sound wave and the deformation
contribution. Correspondingly, the magnitude of this force Fqω can be written as follows:

Fqω = iq

(
γα − iNe

q
δαy

)
E′α

qω + iωq2βuqω (2)

where

E′
qω = Eqω +

iω

c
[uqω × B] +

m

e
ω2uqω.

Eqω is the amplitude of the electric field accompanying the wave.
The amplitude Eqω satisfies the Maxwell equations[

q × [q × Eqω]
] = 4π iωJqω

c2
. (3)

This expression contains the amplitude of the total current density Jqω induced by the passage
of an acoustic wave. The components of Jqω are given by

J α
qω = σαβE′β

qω + ωq

(
γ α − iNe

q
δαy

)
uqω. (4)

The electron kinetic coefficients β and σ have the form

β = i

2π2h̄3

∫
dpz m⊥

∑
n

U−n(pz, −q)Un(pz, q)

ω + i/τ − n�
(5)

σαβ = ie2

2π2h̄3

∫
dpz m⊥

∑
n

vα
−n(pz, −q)v

β
n (pz, q)

ω + i/τ − n�
(6)

where m⊥ is the cyclotron mass and Un(pz, q) is the Fourier transform in the expansion in
terms of an azimuthal angle ψ specifying the position of an electron on the cyclotron orbit:

Un(pz, q) = 1

2π

∫ 2π

0
Un(pz, ψ, q) exp(inψ) dψ (7)

where

Un(pz, ψ, q) = U(pz, ψ) exp

[
inψ − iq

�

∫ ψ

0
vy(pz, ψ ′) dψ ′

]

Un(pz, ψ) = )yy(pz, ψ) − 〈)yy〉 − N

g
.

(8)
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Here )yy(pz, ψ) and vy(pz, ψ) are the corresponding components of the deformation potential
tensor and the electron velocity, N is the electron concentration, the symbol 〈· · ·〉 denotes the
averaging over the FS, g is the density of states on the FS.

The Fourier transforms of the electron velocity components in the expansion in terms of
the angle ψ are determined by relations similar to (7):

vα
n (pz, q) = 1

2π

∫ 2π

0
vα(pz, ψ) exp

[
inψ − iq

�

∫ ψ

0
vy(pz, ψ ′) dψ ′

]
dψ. (9)

For a multiply connected FS, the integration with respect to pz in (5) must be supplemented
with summation over all sheets of the FS. In this case, the values of Un(pz, q) are calculated
separately for each sheet.

In equations (2), (4) the term (iNe/q)δαy then has to be replaced by

ie

q

∑
k

Nk

ek

|e| (10)

where a summation has to be performed over the sheets of the Fermi surface; Nk is the
concentration of charge carriers for the kth sheet; ek is their charge. When a metal being
considered has equal numbers of electrons and holes, the term (10) is equal to zero and the
corresponding addends in the expressions for Fqω and Jqω vanish. We can obtain the expression
for the kinetic coefficient γα by replacing U−n(pz, −q) by evα

−n(pz, −q) in equation (5). To
obtain the expression for γ α we have to replace Un(pz, q) by evα

n (pz, q).
To determine the wave vector of the acoustic wave propagating in a metal, we have to

solve the equation for the amplitude of the elastic displacement of the lattice together with the
Maxwell equations. As a result we arrive at the formula

q2 = ω2

s2
− iωq2

ρms2

(
β∗ +

γ ∗(γ ∗ − Bcq/4πω)

σ ∗ − c2q2/4π iω

)
. (11)

Here

β∗ = β −
[

γy − ie

q

∑
k

Nk

ek

|e|

]2 /
σyy

γ ∗ = γx −
[

γy − ie

q

∑
k

Nk

ek

|e|

]
σyx

σyy

γ ∗ = γ x −
[

γ y − ie

q

∑
k

Nk

ek

|e|

]
σyx

σyy

σ ∗ = σxx + σ 2
yx/σyy.

(12)

For small amplitudes of acoustic waves, the wave vector is described by the expression

q = ω/s + .q. (13)

The increment .q linear in uqω which emerges as a result of interaction with electrons has the
following form in the case under investigation:

.q = iq2

2ρms

(
β∗ +

γ ∗(γ ∗ − Bcq/4πω)

σ ∗ − c2q2/4π iω

)
. (14)

The wave vector q on the right-hand side of (14) is assumed to be equal to ω/s.
In the region under investigation where dR � 1, the main contribution to the integral with

respect to ψ in expressions (7), (9) for Un(pz, q) and vα
n (pz, q) comes from the neighbour-

hoods of stationary points on cyclotron orbits. Accordingly, estimating the integrals by the
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stationary-phase method, we can obtain the following asymptotic expressions for U±n(pz, ±q):

U±n(pz, ±q) = 1

π
U0(pz) exp

[
±iqR(pz) ± iπ

n

2

]
×

{
cos

(
qR(pz) − π

n

2

)
V (pz) − sin

(
qR(pz) − π

n

2

)
W(pz)

}
(15)

where U0(pz) = U(pz, ψ1) = U(pz, ψ2), 2R is the diameter of a cyclotron orbit of electrons
in the direction of propagation of the acoustic wave, ψ1 and ψ2 are the values of the angle
ψ corresponding to stationary points on the cyclotron orbit, ψ1 − ψ2 = π . The form of the
functions V (pz) and W(pz) is determined by singularities of the energy–momentum relation
for electrons in the vicinity of stationary points.

3. The model and results

Let us assume that among the sheets of a closed Fermi surface there is a biconvex lens, whose
symmetry axis is the x-axis of the chosen coordinate system. We write the energy–momentum
relation for the electrons associated with the lens in the form

E( p) = p2
1

2m1

(
p2

y + p2
z

p2
1

)r

+
p2

2

2m2

(
px

p2

)2

. (16)

The curvature of the FS is given by the formula

K = 1

v3
(P R − Q2) (17)

where v =
√

v2
x + v2

y + v2
z ; also,

P =
(

∂vz

∂px

+
∂vx

∂pz

)
vxvz − ∂vz

∂pz

v2
x − ∂vx

∂px

v2
z

Q =
(

∂vz

∂px

vy +
∂vz

∂py

vx

)
vz − ∂vz

∂pz

vxvy − ∂vy

∂px

v2
z

R =
(

∂vz

∂py

+
∂vy

∂pz

)
vyvz − ∂vz

∂pz

v2
y − ∂vy

∂py

v2
z .

(18)

Straightforward calculations give us the following result for the curvature of the lens:

K = r

m1v4

(
p2

y + p2
z

p2
1

)r−1
[(

v2
y + v2

z

m2

)
∂vx

∂px

+
r(2r − 1)

m1

(
p2

y + p2
z

p2
1

)r−1

v2
x

]
. (19)

If the parameter r characterizing the shape of the lens assumes values greater than unity, then
the Gaussian curvature of the surface vanishes at the points (±p2; 0; 0), which coincide with
the vertices of the lens. Because of the axial symmetry of the lens, the vertices are points
where the surface of the lens is flattened. The greater the value of r , the flatter the lens will
be near its vertices. The results of experiments on the cyclotron resonance in a magnetic field
applied along a normal to the surface of a metal [13, 14] give a basis for conjecture that such
a flattened electron lens may be an element of the FSs of cadmium and zinc [15].

Electrons associated with the vicinities of the vertices of the lens will strongly participate in
the absorption of the energy of the acoustic wave, when both the magnetic field and the acoustic
wave vector are perpendicular to the axis of the lens (figure 1). Within the framework of the
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model (16), the functions V (pz) and W(pz) included in the expression (15) for U±n(pz, ±q)

corresponding to the lens can be written as follows:

V (pz) =
∫ ∞

0
cos[qR(pz)Qr(y, pz)] dy

W(pz) =
∫ ∞

0
sin[qR(pz)Qr(y, pz)] dy

(20)

where

Qr(y, pz) =
r∑

k=1

ak(pz)y
2k

(
m2

⊥
m1m2

)k

(21)

and m⊥ is the cyclotron mass for the electrons associated with the lens. All of the dimension-
less coefficients ak(pz) except ar(pz) become zero at pz = 0; the latter is of the order of unity
at this point. Specifically for r = 2 we have

Q2(y, pz) = m2
⊥

m1m2
a1(pz)y

2 +

(
m2

⊥
m1m2

)2

a2(pz)y
4 (22)

where

a1(pz) = p2
z

p2
1

a2(pz) = 1

2

(
1 − 4

3

p4
z

p4
1

)
. (23)

The leading term of the asymptotic expansion of the function V (pz) in inverse powers of qR

originates from a neighbourhood of the central cross-section. For r = 2 it has the form

V (pz) = 7(1/4)

4

√
m1m2

mex
⊥

(
2

qRex

)1/4

cos

(
π

8

)
. (24)

Here, 7(x) is the gamma function, mex
⊥ = m⊥(0), and Rex = R(0). The asymptotic expression

for W(pz) is obtained from equation (24) by replacing the cosine by a sine of the same argument.
For an arbitrary value of r , the function V (pz) in a neighbourhood of pz = 0 is described

by the asymptotic expression

V (pz) = 1

2r

7(1/2r)

(qRex)1/2r

√
m1m2

mex
⊥ (ar(0))1/r

cos(π/4r). (25)

A similar expression can also be written for W(pz).
Using the asymptotic expressions (15), (25) for U±n(pz, ±q) and similar asymptotics for

vα
±n(pz, ±q), we arrive at expressions for the electron kinetic coefficients. Taking into account

that the largest contribution to the integrals over pz in the expressions (5), (6) originates from
the range of small pz, we can replace all smooth functions of pz in the integrands by their
values at pz = 0. For qR � 1 the main contribution to the asymptotic expression for β is
associated with the electrons of the lens:

β = ig

ω

µ

(qRex)1/r
U 2

0 (0)X(ω). (26)

Here Rex = R(0); a dimensionless constant µ is given by

µ = a2
r

4
√

π

〈1〉
g

7

(
r + 1

2r

)/√∫ 1

0
m⊥(x) dx. (27)

We introduce the notation 〈1〉 for the electron DOS on the lens; x = pz/pm; m⊥(x) =
m⊥(x)/m⊥(0). The frequency-dependent factor X(ω) in equation (26) has the form

X(ω) =
∫ 1

−1
Y (ω, x) dx (28)
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where

Y (ω, x) = −iπ
ω

�

{
coth

[
π

1 − iωτ

�τ

]
+ cos

(
2qR +

π

2r

)(
sinh

[
π

1 − iωτ

�τ

])−1
}

. (29)

We obtain asymptotic expressions for the remaining electroacoustic kinetic coefficients in a
similar way. Specifically we have

γy = ie

q

∑
k

Nk

ek

|e| +
ieg

q

µ

(qRex)1/r
U0(0)X(ω) (30)

σyy = − ie2

q2
ωg

(
1 − µ

(qRex)1/r
X(ω)

)
. (31)

The oscillating terms in equations (30), (31) are mainly determined by the contributions from
the flattened electron lens. The contributions from remaining (nonflattened) sheets of the FS
are proportional to the small factor 1/qR and we can omit them.

In the high-frequency range (ωτ � 1) the function Y (ω, x) has singularities at frequencies
ω which are equal to the multiple cyclotron frequency �. These singularities arise due to the
acoustic cyclotron resonance which was analysed in references [16, 17]. The second term in
equation (29) also contains the factor cos(2qR + π/2r) describing geometric oscillations.

The main contribution to the integral (28) is from the region of small x where the cyclotron
frequency is close to its extremum value �ex . In this region, which corresponds to the vicinity
of the central cross-section of the lens, we can use the following approximation:

�(x) = �ex(1 + η2x2) (32)

where

η2 = 1√
π

7((r + 1)/2r)

7(1 + 1/2r)

∫ 1

0

dz

z2

(
1√

1 − z2
− 1√

1 − z2r

)
. (33)

When r = 1 and the lens is ellipsoidal in shape, this parameter η2 becomes zero. In this case
the cyclotron frequency is independent of pz. For a flattened lens (r � 2), this parameter takes
nonzero values which may be of the order of unity.

3.1. Case A: moderately flattened FS

The asymptotic expression for the function X(ω) near the cyclotron resonance depends on the
ratio of the parameters 2qRex and (ωτ)r/2. Under the conditions considered both parameters
are large compared to unity. Suppose that 2qRex � (ωτ)r/2. Under conditions of the acoustic
cyclotron resonance in typical metals the parameter qRex ∼ vF /s ∼ 103 (vF is the Fermi
velocity for the electrons associated with the lens). For �τ ∼ 102 this inequality can be
satisfied when the lens is moderately flattened (1 < r < 2). The asymptotic expression for
the function X(ω) near the cyclotron resonance can be written as follows:

X(ω) = π

η

1

�

[
1 +

(−1)nb

(qRex)1/2l

cos(2qRex + π/4r)

�

]
(34)

where

b = 2η

π
7(1 + 1/2r) � =

√
1 − ω

n�ex

− i

ωτ
.

The principal term in the expression obtained for X(ω) is its first term. The second term in
equation (34) which describes the geometric oscillations is significantly smaller in magnitude.
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When 2qRex � (ωτ)r/2 the dynamical correction .q near the acoustic cyclotron reson-
ance remains small compared to the main approximation for the ultrasound wave vector ω/s.
For longitudinal waves this correction is mainly determined by the deformation interaction of
the sound wave with the electrons. The resonance contribution to the correction .q from the
electrons associated with the neighbourhood of the central cross-section of the lens (16) equals

.q = γ0
1

(qRex)1/r

qRex

n

1

�

[
1 +

b cos(2qRex + πn + π/4r)

�(qRex)1/2r

]
. (35)

Here

γ0 = πNqωm⊥(0)µ

2ηρms2p2
U 2

0 (0)

is a quantity of the dimension and order of the attenuation rate for high-frequency ultrasound
waves in the absence of the external magnetic field.

The real and imaginary parts of the correction .q determine the resonance contributions
from the electrons associated with the lens to the velocity shift .s/s and the attenuation rate
7 of the ultrasound wave:

.q

q
= .s

s
+

i7

2q
. (36)

For r = 1 the result (35) for the attenuation rate coincides with the corresponding result of
reference [17], which is obtained under assumption that the FS of a metal has a finite and
nonzero curvature everywhere. When l = 1 the magnitude of the resonance feature in the
attenuation rate is of the order of γ0

√
ωτ/n. In this case the magnitude of the geometrical

oscillations is smaller by a factor
√

ωτ/qRex than the magnitude of the resonance feature
connected with the cyclotron resonance.

When r > 1 the effective strip on the FS passes through the flattened segments near
the vertices of the lens. It gives the amplification of the acoustic cyclotron resonance. The
dependence of the attenuation rate of the ultrasound on the magnetic field near the cyclotron
resonance is shown in figure 2. The FS is assumed to be moderately flattened. The resonance
contribution to the ultrasonic absorption coefficient increases by a factor of (qRex)(r−1)/r . This
amplification arises due to the increase in the number of electrons participating in the resonance
absorption of the energy of the ultrasound wave.

This increase in the number of efficient electrons also leads to amplification of the
geometric oscillations. The corresponding term in equation (35) is (qRex)(r−1)/2 times larger in
magnitude than a similar term in the expression for .q for a simple metal. When the flattening
of the FS becomes stronger, the magnitude of the geometric oscillations grows faster than the
magnitude of the peak corresponding to the acoustic cyclotron resonance. The larger r , the
larger the contribution from the term associated with the geometrical oscillations (the second
term in expression (35)) to the correction .q.

3.2. Case B: strongly flattened FS

We can use expression (35) to describe the resonance part of the dynamic correction .q only
for moderate flattening of the electron lens and moderately large ωτ . When the flattening of the
lens near its vertices is strong, the quantity (ωτ)r/2 exceeds the parameter 2qRex . Under the
conditions of acoustic cyclotron resonance in typical metals the inequality 2qRex � (ωτ)r/2

can be satisfied for r > 3.
In this case we have to use a new asymptotic expression for the function X(ω). This new

asymptotic can be written as follows:

X(ω) = π

η

1

�

[
1 + (−1)n cos

(
2qRex +

π

2r

)]
. (37)
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Figure 2. Attenuation of longitudinal ultrasound waves versus ω/�ex in the vicinity of the
cyclotron resonance for a moderate flattening of the Fermi surface near vertices of the electron
lens. Curves are plotted for ωτ = 10, qRex = 100, r = 1.25 (curve 1), r = 1.5 (curve 2),
r = 1.75 (curve 3).

The two terms in expression (37) are of the same order in magnitude. It critically changes
the magnetic field dependence of the function X(ω) near the resonance (ω ≈ n�ex). When
the asymptotic (37) is applicable, the factor X(ω)/(qRex)1/r in the expressions for the kinetic
coefficients is not small compared to unity. In this connection, the contribution to the dynamic
correction .q arising due to the interaction with the electromagnetic field accompanying the
sound wave becomes significant.

The effects originating from coupling of electromagnetic and ultrasound waves are well
known. Specifically it has been shown that the ultrasound wave propagating perpendicularly
to the external magnetic field can couple to short-wavelength cyclotron waves (see references
[18–20]). In our geometry, longitudinal ultrasound waves couple to longitudinal cyclotron
waves whose dispersion relation is determined by the equation σyy = 0. The dispersion curve
of this mode near the frequency n�ex can be written in the form

ω1 = n�ex

[
1 − 1

(qRex)2/r
f 2(q)

]
. (38)

Here f (q) is an oscillating function:

f (q) = 2πµ

η
cos2

[
qRex +

πn

2
+

π

4r

]
. (39)

This cyclotron mode can propagate in a metal under the condition 2qRex � (ωτ)r/2. The shape
of the dispersion curve of the cyclotron wave considered depends on the local geometry of the
Fermi surface. Longitudinal cyclotron waves similar to the mode described by equation (38)
can propagate in a metal with a spherical FS under the condition qRex < ωτ . Their dispersion
relation has the form (see reference [18])

ω1 = n�(1 + 1/2qR). (40)

The differences between expressions (38) and (40) describing the dispersion curves of the
longitudinal cyclotron waves are completely caused by the local flattening of the FS considered.
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For a very strong flattening of the vicinities of the vertices of the electron lens (2qRex �
(ωτ)r/2) we can write the following expression for the resonance contribution to the dynamic
correction .q:

.q = γ0
qRex

n

f 2(q)

(qRex)2/r

ω

ω1 − ω − i/τ
. (41)

Here ω1 is the frequency of the longitudinal cyclotron wave described by formula (41). The
frequency ω1 corresponds to the resonance rather than the cyclotron frequency �ex . The shift
of the peak of the acoustic cyclotron resonance caused by the coupling of the ultrasound to
the short-wavelength cyclotron wave was studied for the spherical and ellipsoidal FSs. When
the effective segments of the FS are locally flattened, this shift is more pronounced and more
available for experimental observation.

Besides the cyclotron mode described by equation (41), Fermi-liquid cyclotron waves
can propagate in metals. Coupling to these Fermi-liquid modes can change the resonance
contribution to the dynamical correction .q near the acoustic cyclotron resonance. However,
it is shown in reference [21] that these changes are not very significant because the coupling
of the ultrasound to these Fermi-liquid modes is weaker than that to the mode analysed above.
This provides a reason for neglecting Fermi-liquid effects in the present consideration.

The factor f 2(q) in expression (41) describes the geometric oscillations which are
superimposed on the peak corresponding to the acoustic cyclotron resonance. The amplitude
of these geometric oscillations sharply increases near the resonance. To order of magnitude,
it is determined by the height of the resonance peak. Thus the geometric oscillations of the
ultrasonic absorption coefficient in metals with strongly flattened FSs can reach values of the
order of the smooth part of the attenuation rate. The geometric oscillations may become giant
near the acoustic cyclotron resonance. Figure 3 illustrates this conclusion.

Since the amplification of the geometric resonances in the velocity and absorption of the
ultrasound is due to the local geometric characteristics of the FS, it can be observed only for

Figure 3. Giant geometrical oscillations of the attenuation rate of longitudinal ultrasound waves
in the vicinity of the cyclotron resonance for strong flattening of the Fermi surface near vertices of
the electron lens (r = 4). The curve is plotted for ωτ = 10, qRex = 100, µ = 0.1. The shift of
the resonance occurs due to the coupling of the ultrasound to the cyclotron wave.
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a particular choice of the direction of the magnetic field with respect to the symmetry axes
of the crystal lattice. When the magnetic field is tilted away from the direction for which
the point of flattening of the FS falls on its section corresponding to the cyclotron orbit of
the electrons participating effectively in the formation of the oscillations, the influence of this
point vanishes and the amplitude of the oscillations decreases. Therefore, the amplification of
geometric oscillations, just like a number of other effects which result from local geometric
features of the FS of a metal [1–4], should exhibit a pronounced dependence on the direction of
the external magnetic field. Specifically, for the model FS (16) considered here, the amplitude
of the geometric oscillations of the velocity and attenuation rate of the sound will depend on
the angle ϕ between the external magnetic field and a plane perpendicular to the axis of the
lens. The range of variation of the amplitude of the oscillations on increasing ϕ is determined
by the degree of flattening of the lens near its vertex.

4. Summary

In summary, the results of the study of electron energy spectra of metals as well as the
experimental results of references [5, 6, 13, 14] provide a basis for the assumption that the FSs
of certain metals (e.g. cadmium and zinc) can include locally flat segments. These features of
the local geometries of the FSs can be enhanced by applying an agent that changes the shape
of the constant energy surfaces, e.g., external pressure. Also, the local flattening of the FS can
be enhanced in ultrathin films of metals.

We showed that the local flattening of the FS of a metal can give rise to a significant
amplification of both the acoustic cyclotron resonance and the geometric oscillations of the
attenuation rate and the velocity shift of the ultrasound wave. We predict that it will transpire
that the amplification has to be particularly strong for a strong local flattening of the FS to occur.
When the flattening of the FS at the stationary points is strong enough (within the framework
of our model (16), this corresponds to r > 3), the magnitude of the geometric oscillations of
the attenuation rate of the ultrasonic waves near the acoustic cyclotron resonance can reach
values of the order of the smooth part of the absorption coefficient. We also predict that for a
strongly flattened FS it will transpire that the shift in the resonance frequency of the cyclotron
resonance which occurs due to the coupling of the ultrasound to the short-wavelength cyclotron
wave has to be more pronounced than in typical metals and can be observed in experiments.
The probability of the observation of the effect of enhancement of the geometric oscillations
increases due to the anisotropy of this effect. The magnitude of the oscillations depends
on the orientation of the magnetic field. The appearance of such a dependence can provide
experimental evidence of the effect and also additional information on the geometry of the FS
for some metals.
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